COURSE TYPE	COURSE CODE	NAME OF THE COURSE		Т	Р	CREDIT
DP	NFMC510	Simulation of Mineral Processing Systems Lab 0		0	3	1.5

COURSE OBJECTIVE

This course covers techniques for the use of quantitative models for mineral processing unit operations and the simulation of the steady-state operation of mineral processing plants.

LEARNING OUTCOMES

Upon successful completion of this course, the students will learn about the

- Simulation of the unit operations involved in a mineral processing plant using the MODSIM simulator.
- Interpretation of the information that is produced by the simulator and how to apply it to the solution of practical operating problems

NO.	TOPICS TO BE COVERED	Hours	LEARNING OUTCOME
1	Orientation of Simulation of Mineral Processing Systems Lab	3	Introduction to Simulation of Mineral Processing Systems Lab
2	Introduction to the MODSIM simulator	3	Downloading and installing MODSIM Learning to use MODSIM graphics editor.
3	Particle populations and distribution functions	3	Use of MODSIM simulator for performing simulations to learn particle populations and distribution functions
4	Simulation of mineral liberation and comminution	3	To understand mineral liberation during comminution stages through simulation
5	Simulation of crushing circuits, including vibratory screens	3	To understand the techniques for simulating crushing circuits.
6	Simulation for open grinding circuits.	3	To implement to models for ball, rod, SAG and AG mills for simulating milling circuits
7	Simulation of closed grinding circuits.	3	Implementation of classifier models for simulating closed loop milling circuits
8	Simulation of gravity separation plants and dense media separations – baths and cyclones	3	Gain proficiency in simulating gravity separation plants and dense media separations
9	Autogenous gravity separations - jigs, sluices, Reichert cones, water- only cyclones and spiral concentrators and Gravity	3	Apply simulation techniques to model the performance of autogenous gravity separation equipment accurately.

14	new plants	3	Learn to design new processing plants effectively using simulation techniques.
	plants. Simulation for designing		
13	Putting it all together - simulating complex	3	Knowledge of integrating diverse processes to simulate complex mineral processing plants effectively.
12	Simulation of combined comminution and concentration plants including regrinding.	3	To learn simulation techniques for combined comminution and concentration plants, incorporating regrinding processes effectively.
11	Flotation plant structure and plant specification by grade recovery relationships.	3	To understand the structure of the flotation plant and its specifications by grade recovery relationships analysis
10	plant flowsheets Simulation of flotation plants and flotation systems	3	To learn the simulation of flotation plants and systems to optimize flotation operations effectively.

TEXT BOOKS:

1. Simulations of Mineral Processing Systems Laboratory Manual by FMME Department, IIT (ISM) Dhanbad